

The HOPI Project

Rick Summerhill

Associate Director, Backbone Network Infrastructure, Internet2

JET Roadmap Workshop

Jefferson Lab

Newport News, VA

April 13, 2004

Outline

- Resources
 - Abilene
 - NLR
 - Experimental MAN LAN Facility
 - RONs
- The HOPI Project Hybrid Optical and Packet Infrastructure
 - Architectures based on availability of optical infrastructure
 - -Based on dark fiber acquisitions at the national, regional, local level

Abilene Particulars

Performance

- 6.2 gpbs single flows across Abilene
- Consistent 9.5 gbps traffic patterns during SC2003 from Phoenix
- The performance is good, but we need to look to the future
- Agreement with Qwest ends in 2.5 years
 - How should we go forward?

NLR Summary

- Largest higher-ed owned/managed optical networking & research facility in the world
 - ~10,000 route-miles of dark fiber
 - Four 10-Gbps λ's provisioned at outset
 - One allocated to Internet2
 - One an experimental IP network
 - One a national scale Ethernet
 - One a spare and quick start
- An experimental platform for research
 - Research committee integral in NLR governance
 - Advance reservation of λ capacity for research
 - Experimental support center

NLR footprint and physical layer topology – Phase 1

Note: California (SAN AX SML) routes shown are part of CalREN; NLR is adding waves to CalREN systems. Also the CENIC SVŁ Sacramento (SAC) ELH route will become part of NLR SVŁ SEA in exchange for a SVŁ SAC LH route NLR is building (props hown here).

MAN LAN

Ethernet Switch

- Layer2 Interconnectivity Classic exchange point
- VLANs between connectors

ONS Cisco 15454

- TYCO/IEEAF Circuit moved to experimental facility
 - -Circuit was router to router, now is ONS to ONS
 - Ability to map circuits to Abilene or for other experimental reasons
- OC-192s: CANARIE, Surfnet, Abilene

INTERNET

Leading & Emerging Regional Optical Initiatives

- California (CALREN)
- Colorado (FRGP/BRAN)
- Connecticut (Connecticut Education Network)
- Florida (Florida LambdaRail)
- Indiana (I-LIGHT)
- Illinois (I-WIRE)
- Maryland, D.C. & northern Virginia (MAX)
- Michigan
- Minnesota
- New York + New England region (NEREN)
- North Carolina (NC LambdaRail)
- Ohio (Third Frontier Network)
- Oregon
- Rhode Island (OSHEAN)
- SURA Crossroads (southeastern U.S.)
- Texas
- Utah
- Wisconsin

Architectural Issues

- Some discipline specific networks have enormous bandwidth requirements
 - High Energy Physics and the Large Hadron Collider
 - The Square Kilometer Area (SKA) Community
- Questions concerning packet infrastructures
 - The shared packet infrastructure itself the ability to support multiple large flows on the order of 6 gbps.
 - Unlikely to have 40 gbps or 100 gbps in near future
 - Increasing demands by some for deterministic paths
 - Ability to run transport protocols other than TCP.
 - Demand for more dynamic control of bandwidth and topology
- •Where are we going?

HOPI Project - Summary

Future likely to provide a rich set of switched optical paths

- Basic IP packet switched network
- A set of optically switched waves available for dynamic provisioning

Goal – Understand architecture for the future

 Examine a Hybrid of shared IP packet switching and dynamically provisioned optical lambdas

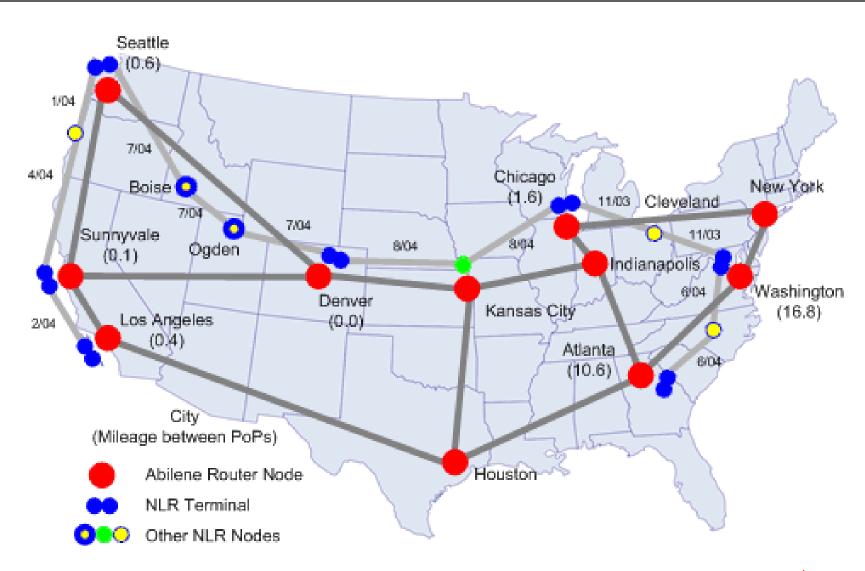
Immediate Goals

- Create a white paper describing a testbed to model the above infrastructure – Internet2 member meeting.
- Implement testbed over the next year
- Coordinate and experiment with other similar projects

Design Team

HOPI Project Design Team

- Linda Winkler (CoChair)
- Peter O'Neil
- Bill Owens
- Mark Johnson
- Tom Lehman
- Philip Papadopoulos
- David Richardson
- Chris Robb
- Sylvain Ravot
- Jerry Sobieski
- Steven Wallace
- Bill Wing
- Cees de Laat
- Rene Hatem
- Internet2 Staff Rick Summerhill (CoChair), Guy Almes, Heather Boyles, Steve Corbato, Chris Heermann, Christian Todorov, Matt Zekauskas



HOPI Resources

- The Abilene Network MPLS tunnels
- The Internet2 Wave on the NLR footprint
- MAN LAN Experimental Facility
- The Regional Optical Networks RONs

Abilene/NLR Map

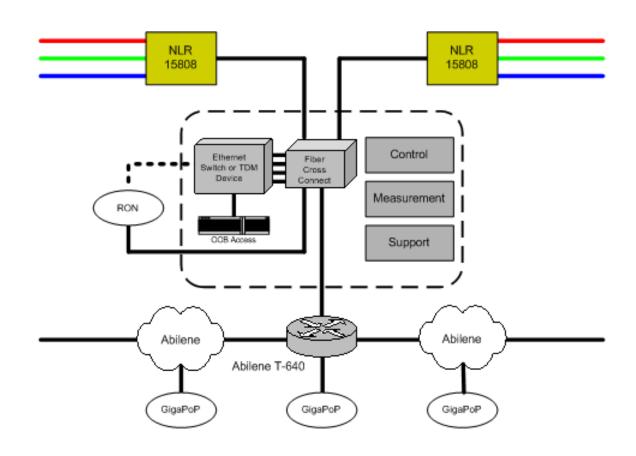
HOPI Project

Problems to understand

- Goal is to look at architecture
- Temporal degree of dynamic provisioning
- Temporal duration of dynamic paths and requirement for scheduling
- Topological extent of deterministic provisioning
- Examine backbone, RON, campus hierarchy how will a RON interface with the core network?
- Understand connectivity to other infrastructures for example, international or federal networks?
- Network operations, management and measurement across administrative domains?

HOPI Basic Service

- Given the resources, we cannot use multiple waves to study new architectures – only a limited number of waves are available
- Rather, we'd like to model waves using lower bandwidth "deterministic" paths – paths that look like circuits to some extent.
- Basic service A 1 or 10 GigE unidirectional point-to-point path with reasonable jitter, latency, and loss properties
- Access Direct to HOPI node or an MPLS L2VPN tunnel through Abilene



Experiments

- Planned Experiments 15 to 20
 - Dynamic Provisioning
 - Deterministic Paths
 - Applications Based
 - Miscellaneous
- Encourage use by the community for experimentation – both operational and research communities
- Can start in near future by using MPLS tunnels from Abilene

HOPI Node

Recent Activities

- Deterministic Path LA to CERN
 - Internet2
 - CANARIE
 - GEANT
 - Others
 - -Starlight
 - -Surfnet
- Attempt to Understand Problems
 - Different Technologies
 - Cross Administrative Domains
 - How could we make this dynamic in some way?

Joint Demo L2 Final Solution Path legend Path 1 - routed path using Chicago-CERN direct connection (default) Path 2 - routed using GEANT-Internet2 MAN-LAN connection Path 3 - deterministic path using CANARIE/GEANT/Internet2 lightpath L2-VPN OAMP (NMS4-LOSA) IPERF-BWCTL (NMS1-LOSA) Path 1 - 198.32.10.244 Path 1 - 198.32.8.182 Path 2 - TBD Path 2 - TBD Chicago Path 3 - TBD Path 3 - TBD Abilene (MPLS) -OC-192c POS - -Los Angeles (abilene ucaid.edu) StarLight (Ethernet) GbE slot/port 15/1 STS-24c within OC-192 CA*net (TDM) 15454 15454 CA*net (TDM) Thru ons-tor01 (ons-nyc01) (ons-chi01) **New York** OC-192 slot 5, STS-24c starting at STS-1 -TYCO/IEEAF -Internet2 (TDM) 15454 Surfnet OC-192LR SurfNet (TDM) 15454 (tdm1.amsterdam1 STS-24c within OC-192 IP VLAN2: TBD **VLAN-ID: 238** 15454 SurfNet (TDM) (tdm1.amsterdam4 IP VLAN1: TBD VLAN-ID: TBD GbE slot/port 14/1 GE GEANT (DiffServ -CERN (datatag.org) Premium IP Service) nl1.nl OAMP (v09qva) IPERF-BWCTL (w05gva) Path 1 - 192.91.239.9 Path 1 - 198.91.239.5 Path 2 - 192.91.238.39 Path 2 - 192.91.238.35 **GEANT** Path 3 - TBD Path 3 - TBD layer 3 Input filter to tag routing packets as PIP (src and dst prefix list) -GE normally PIP packets entering GEANT are STM-16-R04gva R05gva retagged as BE Cisco 7606 Juniper M10

PIP

Control and Management Plane

Current Status

- Edial 8 hours of conference calls
- Email 500 email messages

References

More Information

- http://abilene.internet2.edu
- http://www.nationallambdarail.org
- http://hopi.internet2.edu
- abilene@internet2.edu

www.internet2.edu